文章编号:1000-324X(2023)09-1062-07

DOI: 10.15541/jim20230022

钙钛矿多色级联发光二极管中多中心 载流子均衡分布调控研究

王 润,相恒阳,曾海波

(南京理工大学 材料科学与工程学院, 新型显示材料与器件工信部重点实验室, 南京 210094)

摘 要: 钙钛矿发光二极管(PeLEDs)具有优异的光电特性,在显示应用中表现出巨大的发展潜力。红、绿和蓝单色 PeLEDs 的研究已经取得了突破性的进展,但是三色钙钛矿共同电致发光的研究始终迟滞不前。本研究在不同钙钛 矿之间引入具有空穴/电子产生和传输能力的中间连接层(ICL),实现了蓝绿双色和红绿蓝三色发光中心共同电致 发光。一方面,ICL 可以抑制不同钙钛矿之间的离子交换和能量转移;另一方面,ICL 具有电荷产生和输运功能,能 够确保不同发光中心获得足够的载流子实现独立发光。进一步改变空穴传输层(NPB)的厚度可以调控蓝绿双色发光 中心之间的能量均衡分布,当 NPB 厚度为40 nm 时,器件表现出最大外量子效率(External Quantum Efficiency, EQE) 为 0.33%。红绿蓝钙钛矿共同电致发光器件的最大 EQE 达到 0.5%。本工作首次报道了红绿蓝三色钙钛矿共同电致 发光,并为钙钛矿多色发光中心共同电致发光提供了具有参考性的策略,推动了钙钛矿在显示应用中的发展进程。 **关 键 词:** 钙钛矿发光二极管; 多色发光中心; 中间连接层; 载流子分布调控

中图分类号: O472 文献标志码: A

Carrier Balanced Distribution Regulation of Multi-emissive Centers in Tandem PeLEDs

WANG Run, XIANG Hengyang, ZENG Haibo

(MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)

Abstract: Perovskite light-emitting diodes (PeLEDs), owing to their unique photoelectric performance, show promising prospects in display applications. Red, green, and blue monochromatic PeLEDs have achieved remarkable breakthroughs, but the study of red/green/blue perovskite co-electroluminescence is still delayed. This study proposed a strategy that an intermediate connection layer (ICL) with hole/electron generation and transport capability is introduced between perovskites. On the one hand, introduction of the ICL can inhibit ion exchange and energy transfer. On the other hand, ICL has a charge-generation function that ensures different perovskite centers capture enough carriers. Furthermore, the thickness of the hole transport layer (NPB) is optimized. Furthermore, the thickness of the

收稿日期: 2023-01-12; 收到修改稿日期: 2023-03-16; 网络出版日期: 2023-04-03

基金项目:中央高校基本科研业务费专项资金(30920041117,30921011106);国家自然科学基金(62004101,52131304);国家 重点研发计划(2022YFB3606502) Fundamental Research Funds for Central Universities (30920041117, 30921011106); National Natural Science

Foundation of China (62004101, 52131304); National Key Research and Development Program of China (2022YFB3606502)

作者简介: 王 润(1993-), 女, 博士研究生. E-mail: wangrun@njust.edu.cn WANG Run (1993-), female, PhD candidate. E-mail: wangrun@njust.edu.cn

通信作者:相恒阳,讲师.E-mail: xiang.hengyang@njust.edu.cn;曾海波,教授.E-mail: zeng.haibo@njust.edu.cn

XIANG Hengyang, lecturer. E-mail: xiang.hengyang@njust.edu.cn; ZENG Haibo, professor. E-mail: zeng.haibo@njust.edu.cn

hole transport layer (NPB) is regulated, the blue/green tandem PeLED achieved relatively balanced luminescence and exhibits the largest EQE of 0.33%. The developed red/green/blue tandem PeLED exhibits the highest EQE of 0.5%, which is the first report in the field of PeLEDs, and exhibits the largest External Quantum Efficiency(EQE) of 0.33%. The developed red/green/blue tandem PeLED exhibits the highest EQE of 0.5%. In conclusion, this work provides a reference strategy for the co-electroluminescence of multicolor perovskites, which is expected to promote the development of perovskite in display applications.

Key words: perovskite light-emitting diodes; multicolor emission centers; intermediate connection layer; carrier distribution regulation

金属卤素钙钛矿发光材料具有优异的光电特性, 如可见光范围内光谱可调、光致发光量子产率高 (PLQY, > 90%)^[1]、半峰宽窄(~20 nm)^[2]、载流子扩 散距离长(> 175 µm)^[3]、光吸收系数大(105 cm⁻¹)^[3] 以及材料成本低,是当前最具竞争力的发光材料之 一,在照明显示领域展现出广阔的发展前景。近十 年来,钙钛矿发光二极管(PeLEDs)一直备受关注, 短短几年内单色 PeLEDs 的研究取得了重大突破^[4-6]。 2018 年. 红光和绿光 PeLEDs 的外量子效率(EOE) 首次达到理论极限(20%)^[7-8],相继报道了许多高效 的红光和绿光 PeLEDs^[9-16]。虽然蓝光器件的发展一 直略有滞后,但最新的研究进展显示,其最高 EQE 也已经达到18%^[17]。为了满足照明、显示等领域的 需求, 红绿蓝三色钙钛矿共同电致发光一直是重要 的研究方向之一。但是, 红绿蓝钙钛矿共同电致发 光却鲜有报道^[18-20],这是因为存在几个重大难题, 包括:1)不同的钙钛矿混合会发生离子交换,形成 新的单一发光中心。且在电场驱动下,发光光谱会 发生严重的漂移, 难以控制器件的发光颜色[21]; 2) 多色发光中心之间能量从宽带隙向窄带隙转移,导 致多色发光中心之间能量分布不均衡[22]; 3)在溶液 处理多层结构上,制备不同叠层之间需要满足严苛 的反溶剂条件^[23]。

为了实现多色发光中心共同电致发光,研究者 们一直在探索可行的策略,如采用有机小分子^[24-26]、 传统镉基量子点(QDs)^[27]与钙钛矿混合开发杂化型 白光 LEDs。例如, Yang 课题组^[26]将黄光聚合物与蓝 光钙钛矿量子点混合实现了单一发光层白光 LED。 为了调控多色发光中心之间的能量分布, Liu 等^[25] 设计了有机 p-i-n 异质结(TAPC/FIrpic/BoCzph)与钙 钛矿形成叠层结构,开发了叠层白光 LED。2018年, 蔡植豪团队^[28]实现了全钙钛矿双色发光中心共同 电致发光的突破,采用二(苯基-苯并咪唑)苯基磷氧 (BIPO)和聚[双(4-苯基)(4-丁基苯基)胺](Poly-TPD) 掺杂作为单一内插层嵌入到蓝红双色钙钛矿发光层 之间,分离双色发光中心,开发了第一个双色钙钛 矿共同电致发光的 PeLED。2022 年, Yan 等^[29]采用 Al/HAT-CN/MoO₃ 作为中间连接层(ICL)实现了蓝红 双色 PeLEDs, 其 EQE 为 8.5%。但是, 基于红绿蓝 三色发光中心的共同电致发光始终没有实现。

本研究设计了一个由N型和P型半导体组成的 多层结构(TPBi/LiF/Ag/HAT-CN/MoO₃)作为 ICL 插 入蓝绿双色、红绿蓝三色钙钛矿发光中心之间,形 成具有多发光中心的 PeLEDs。引入 ICL 可以分离 不同的发光中心,抑制不同发光中心之间的能量 转移,进而实现多色发光中心共同电致发光。进 一步改变空穴传输层(NPB)的厚度,调控不同发光 中心载流子分布,进而有效调节器件的电致发光 光谱。

1 实验方法

1.1 材料合成

准二维蓝光钙钛矿前驱体溶液配方^[30],绿光钙 钛矿量子点合成技术^[31],红光钙钛矿量子点合成技 术^[32]分别采用本团队已报道的技术方案。聚乙烯基 咔唑(PVK)购买于 Acros。溴化铯(CsBr, 99.999%)购 买于阿法埃莎。溴化铅(PbBr₂, 99.99%)、苯乙基溴 化胺(PEABr, 99.5%)、溴化胍(GABr, 99%)、氯化胍 (GACl, 99%)、*N*,*N'*-二苯基-*N*,*N'*-(1-萘基)-1,1'-联苯 -4,4'-二胺(PEABr, 99%)、氟化锂(LiF)、*N*,*N*-二苯基 -*N*,*N*-二(萘基-1)-4,4-联苯二胺(NPB, 99%)购自西安 宝莱特光电有限公司。2,3,6,7,10,11-六氰基-1,4,5, 8,9,12-六氮杂苯并菲(HAT-CN, 99.5%)和 1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯(TPBi, 99%)购自吉林奥 莱德光电材料股份有限公司。三氧化钼(MoO₃)购自 辽宁惠特光电科技有限公司。

1.2 器件制备

在制备器件之前,用乙醇和丙酮超声清洗氧化 铟锡(ITO)玻璃衬底。烘干后,清洗干净的 ITO 衬 底用紫外臭氧处理 15 min。(1)准二维蓝光 PeLED

的制备。将样品置于充满氮气气氛的手套箱中,旋 涂空穴传输层 8 mg/mL PVK 的氯苯溶液,转速 5000 r/min, 时间 30 s。旋涂完成后, 在 130 ℃加热 台上退火处理 15 min。冷却之后,将预先配制好的钙 钛矿前驱体溶液旋涂在 PVK 上, 转速 4000 r/min, 时 间 60 s, 60 ℃热台退火 10 min。最后, 蒸镀电子传 输层 TPBi(30 nm)、电子注入层 LiF(0.5 nm),、阴极 Al(100 nm)。(2)绿光(红光)钙钛矿量子点 PeLEDs 的制 备。在空气中旋涂空穴注入层(HIL)PEDOT:PSS, 转 速 3500 r/min, 时间 40 s, 130 ℃热台退火 15 min。 完成后,将样品传入充满氮气气氛的手套箱中,旋 涂空穴传输层(HTL)5 mg/mL PTAA 的氯苯溶液,转 速为3000 r/min,时间40 s,在120 ℃热台退火处理 15 min。冷却之后,用预先合成的绿(红)光量子点溶 液旋涂沉积量子点发光层,转速 3000 r/min,时间 60 s, 无需退火处理。最后, 蒸镀电子传输层 TPBi (30 nm)、电子注入层 LiF(0.5 nm)、阴极 Al (100 nm)。 (3)多色级联器件的制备。将样品传入充满氮气气氛 的手套箱中,旋涂空穴传输层 8 mg/mL PVK 的氯苯 溶液,转速 5000 r/min,时间 30 s。旋涂完成后,在 加热台 130 ℃退火处理 15 min。冷却之后,将预先 配制好的蓝光钙钛矿前驱体溶液旋涂在 PVK 上, 转速 4000 r/min, 时间 60 s, 60 ℃退火 10 min。然 后将样品传入到真空热蒸镀室,在高真空条件下 (基础真空为 1×10⁻⁴ Pa), 蒸镀制备 ICL 和空穴传输 层, 顺序为 TPBi(30 nm)、LiF(0.5 nm)、Ag(0.5 nm)、 HAT-CN(5 nm)、MoO₃(5 nm)、不同厚度的 NPB(30、 40、50 nm)。蒸镀完成之后,将样品传出至手套箱 中,用预先合成的绿光量子点溶液旋涂第二发光层 (3000 r/min, 40 s)。接下来制备第三个发光单元,同 前面的步骤蒸镀第二个 ICL, 再用预先合成的红光 量子点溶液旋涂第三发光层(3000 r/min, 40 s)。最后 蒸镀电子传输 TPBi(30 nm)、电子注入层 LiF(0.5 nm) 和阴极 Al(100 nm)。

1.3 分析与表征

采用由积分球(GPS-4P-SL, Lab sphere)和光电 探测器(S7031-1006, Hamamatsu Photonics)组成的商 业系统(XPQY-EQE 广州市犀谱光电科技有限公司) 测试单色和级联 PeLEDs 的电致发光性能,包括电 流密度-电压(*J-V*)曲线,亮度-电压(*L-V*)曲线,外量 子效率-电压(EQE-*V*)和电致(EL)发光光谱。

2 结果与讨论

为了分离钙钛矿多色发光中心(红、绿、蓝),本

工作在各个钙钛矿发光中心之间引入一个由N型和 P 型半导体组成的 ICL 将多色发光中心串联起来, 形成级联 PeLEDs。器件结构为: 阳极(Anode)/HTL/ 蓝光发光层(B-EML)/ICL/绿光发光层(G-EML)/ICL/ 红光发光层(R-EML)/电子传输层(ETL)/阴极 (Cathode), 如图 1(a)所示。图 1(b)是三色(红/绿/蓝) 级联 PeLEDs 的载流子输运过程和发光原理示意 图。在外置电压驱动下, 空穴和电子分别从阳极和 阴极注入。同时, 电子和空穴在每一个 N 型和 P 型 界面(电荷产生界面, CGI)产生。在第一个 CGI 中产 生的电子注入和传输到蓝光发光层导带(CB), 与从 阳极端注入蓝光发光层价带(VB)中的空穴复合发出 蓝光。同时, 第二个 CGI 产生的电子注入传输到绿 光发光层 CB, 与从第一个 CGI 产生传输到绿光发 光层 VB 中的空穴复合发光。第二个 CGI 产生的空 穴注入传输到红光发光层 VB, 与从阴极注入到红 光发光层 CB 的电子复合发光,从而实现红绿蓝三 色发光中心共同电致发光。

本工作采用准二维蓝光钙钛矿薄膜作为蓝光发 光层,绿光和红光钙钛矿量子点分别作绿光和红光 发光层。三色钙钛矿的紫外-可见光吸收(UV-Vis)与光 致发光光谱(PL)见图 1(c~e)。蓝、绿和红钙钛矿发光 体的吸收边(PL 峰)分别位于:505 nm(488 nm)、530 nm (517 nm)和 718 nm(689 nm)。准二维蓝光钙钛矿薄 膜的光致发光量子产率(PLQY)为 38%^[30],绿光和 红光钙钛矿量子点薄膜的 PLQYs 分别为 78%^[31]和 70%^[32]。基于这三色发光材料制备的蓝、绿和红单 色 PeLEDs 的最大 EQE 分别为 8%、15%和 13%(补 充材料图 S1)。在 4 V 电压下,电致发光(EL)光谱峰 位分别位于 485、518 和 691 nm(补充材料图 S2)。

基于上述三种钙钛矿发光材料, 本研究制备了蓝 绿双色级联 PeLED。器件结构为 ITO/PVK/B-EML/ ICL/NPB (30 nm)/G-EML/TPBi (30 nm)/LiF(0.5 nm)/ Al (100 nm), 相应能级结构示意图如图 2 所示。在 ICL(TPBi/LiF/Ag/HAT-CN/MoO3)结构中, 电荷产生 界面位于 Ag/HAT-CN, 相应的界面势垒为 0.8 eV (小于 1.0 eV), 满足了级联器件中电荷产生的基本 要求^[33]。在外置电压驱动下,电子和空穴在 Ag/ HAT-CN 界面产生, 电子通过 TPBi 的分子最低未占 据轨道(LUMO)克服界面势垒(1.3 eV), 注入传输到 蓝光发光中心与从阳极注入的空穴复合产生蓝光。 同时,产生的空穴依次通过 HTA-CN 和 MoO₃ 的 LUMO 注入, 再传输到 NPB 的最高分子占据轨道 (HOMO)(传输势垒为 0.1 eV), 进入绿光发光中心, 与从阴极注入来的电子复合产生绿光,最终实现了 蓝绿双色共同电致发光。图 3(a)为蓝绿双色级联器

图 1 (a)钙钛矿级联器件结构示意图; (b)级联结构中载流子输运过程和发光原理示意图; (c~e)红、 绿和蓝三色钙钛矿发光体紫外-可见光吸收和光致发光光谱

Fig. 1 (a) Device structure diagram of tandem PeLED; (b) Diagram of carrier transport and luminescence principle in tandem PeLEDs; (c-e) UV-visible absorption and photoluminescence characterization of tri-color perovskites:
(c) Quasi-2D blue perovskite films; (d) Green perovskite QDs; (e) Red perovskite QDs Colorful figures are available on website

图 2 蓝绿双色级联 PeLEDs 能级和载流子输运过程示意图 Fig. 2 Schematic diagram of energy levels of blue/green tandem PeLED and carrier transport process Colorful figures are available on website

件在不同电压下的电致发光光谱。随着电压逐渐增 大,器件的电致发光峰位没有发生漂移,主要归因 于引入的 ICL 有效抑制了不同钙钛矿之间的离子交 换。但是,可以观察到在蓝绿双色发光中心之间,蓝 光的强度大于绿光,且随着电压增大,蓝光增强的 速度超过绿光,导致蓝光与绿光的强度差距进一步 增大,如图 3(b, c)所示。

为了调控蓝光和绿光更加均衡,本研究通过改 变 NPB 厚度来控制绿光发光中心分配的空穴数量, 进而调节发光光谱。如图 3(d, e)所示,当 NPB 厚度 从 30 nm 增加到 40 nm 时,绿光强度得到改善。如 图 3(f)所示,与 30 nm NPB 相比,蓝光与绿光的强度差距明显减小,实现了蓝绿双色发光中心较均衡的共同电致发光。如图 3(g-h)所示,当 NPB 厚度增加到 50 nm 时,绿光强度进一步提升,尤其是在高电压下,蓝光与绿光发光强度差距再次变大,如图 3(i)所示。图 4 是基于不同厚度 NPB 的蓝绿级联 PeLEDs的电致发光性能,包括(a)电流密度-电压(*J-V*)曲线、(b)亮度-电压(*J-V*)曲线、(c)电流效率-电压(CE-*V*)曲线和(d)外量子效率-电压(EQE-*V*)曲线。随着 NPB 厚度从 30 nm 增加到 50 nm,电流密度、亮度、电流效率和外量子效率均逐渐得到提升。当 NPB 厚度从 30 nm 增加到 50 nm 时,蓝绿双色 PeLED 的 EQE 从 0.26%提升到 0.53%。考虑到 NPB 厚度为 40 nm 时,双色发光中心实现了较均衡的发光,在此条件基础上,进一步构建红绿蓝三色级联 PeLEDs。

本研究设计的红绿蓝三色级联器件结构为: ITO/PVK/B-EML/ICL/NPB(40 nm)/G-EML/ICL/NPB (40 nm)/R-EML/TPBi/LiF/Al。得益于有效的 ICL, 红 绿蓝钙钛矿三色发光中心共同电致发光得以实现。 图 5 展示了红绿蓝三色级联 PeLEDs 的电致发光性 能,包括(a)不同电压下的电致发光光谱、(b)电流密 度-电压-亮度(*J-V-L*)曲线和(c)外量子效率-电压-电流 效率(EQE-*V*-CE)曲线。如图 5(a)所示,随着电压逐 渐增大,红、绿和蓝三色发光中心的电致发光强度 逐渐提升,而且没有明显的光谱漂移现象。由于器

Colorful figures are available on website

件中功能层数量增加,整体厚度变大,器件的电流密 度较小,这与文献报道的级联器件现象一致^[33]。器件 的最大亮度为10 cd/m²,最高 EQE 为 0.5%。正如前 面介绍,目前钙钛矿领域中从未实现过红绿蓝三色 共同电致发光,本工作首次进行了相关研究,只是 与钙钛矿红、绿和蓝单色光 PeLED 相比,三色级联 PeLED 的亮度和效率还比较低,这可能归因于: (1)中间连接层载流子产生能力与钙钛矿发光层之 间的适配性;(2)蒸镀 ICL 多层功能层与旋涂钙钛矿 发光层之间的工艺兼容性以及材料的物理化学性能 影响;(3)红绿蓝三色钙钛矿电致发光性能差异大。 上述问题既是后续钙钛矿级联器件设计与研究的焦 点,也可为提升其器件性能提供可行的策略方向。

3 结论

本研究通过在多色钙钛矿发光中心之间嵌入 ICL(TPBi/LiF/Ag/HAT-CN/MoO3)解决了红绿蓝三色 发光中心共同电致发光中的关键难题,如不同钙钛 矿之间的阴离子交换,多色发光中心之间的载流子 不均衡分配。以此为基础,成功实现了蓝绿双色发光 中心共同电致发光。进一步改变空穴传输层的厚度 来调控载流子分配,实现了对双色发光光谱和器件 性能的调节。当 NPB 厚度为 30、40 和 50 nm 时, 蓝 绿双色级联 PeLEDs 的 EQE 分别为 0.26%, 0.32%, 0.53%。且在 NPB 厚度为 40 nm 时, 蓝绿级联 PeLED 的发光较均衡。另外,本工作首次报道了红绿蓝三 色钙钛矿共同电致发光, 其 EQE 为 0.5%, 推动了钙 钛矿的研究进程。本研究制备的多色发光中心共同 电致发光的 PeLEDs 相比于红绿蓝单色光器件, 性 能还有很大的提升空间, 尤其是拓展 ICL 材料和结 构,将是钙钛矿级联型器件的关键。另外,为了满足 未来宽色域显示的需求,标准红绿蓝三色钙钛矿共 同电致发光研究具有广阔的应用前景。

补充材料:

本文相关补充材料可登录 https://doi.org/10.15541/ jim20230022 查看。

参考文献:

- GUALDRÓN-REYES A F, MASI, MORA-SERÓ I. Progress in halide-perovskite nanocrystals with near-unity photoluminescence quantum yield. *Trends in Chemistry*, 2021, 3(6): 499.
- [2] KIM Y H, CHO H, LEE T W. Metal halide perovskite light emitters. Proceedings of the National Academy of Sciences, 2016, 113(42): 11694.
- [3] TANG X, HU Z, YUAN W, et al. Perovskite CsPb₂Br₅ microplate laser with enhanced stability and tunable properties. Advanced Optical Materials, 2017, 5(3): 1600788.
- [4] 孙丽媛, 卢鹏, 邓漫君, 等.钙钛矿材料在发光二极管中的研究 进展. 材料科学与工程学报, 2021, **39(4):** 698.
- [5] 苑帅, 沈万姗, 廖良生. 基于金属卤化物钙钛矿材料的高效发 光二极管. 物理, 2021, 50(6): 8.
- [6] 曹雨, 王娜娜, 伊昌,等. 钙钛矿发光二极管:下一代发光与显示 技术. 光学学报, 2022, **42(17):** 9.
- [7] LIN K, XING J, QUAN L N, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. *Nature*, 2018, 562(7726): 245.
- [8] CAO Y, WANG N, TIAN H, et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. *Nature*, 2018, 562(7726): 249.
- [9] CHIBA T, HAYASHI Y, EBE H, et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. *Nature Photonics*, 2018, **12(11)**: 681.
- [10] HASSAN Y, PARK J H, CRAWFORD M L, et al. Ligandengineered bandgap stability in mixed-halide perovskite LEDs. *Nature*, 2021, **591(7848)**: 72.
- [11] XIE M, GUO J, Zhang X, et al. High-efficiency pure-red perovskite quantum-dot light-emitting diodes. Nano Letters, 2022, 22(20): 8266.
- [12] ZHANG J, ZHANG T, MA Z, et al. A multifunctional "halideequivalent" anion enabling efficient CsPb(Br/I)₃ nanocrystals pure-red light-emitting diodes with external quantum efficiency exceeding 23%. Advanced Materials, 2022, 35(8): 2209002.
- [13] XU W, HU Q, BAI S, et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. *Nature Photonics*, 2019, **13(6)**: 418.
- [14] FANG T, WANG T, LI X, et al. Perovskite QLED with an external quantum efficiency of over 21% by modulating electronic transport. *Science Bulletin*, 2021, 66(1): 36.

- [15] LIU Z, QIU W, PENG X, et al. Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation. Advanced Materials, 2021, 33(43): 2103268.
- [16] CHU Z, YE Q, ZHAO Y, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 22% via small-molecule passivation. Advanced Materials, 2021, 33(18): 2007169.
- [17] JIANG Y, SUN C, XU J, et al. Synthesis-on-substrate of quantum dot solids. *Nature*, 2022, 612(7941): 679.
- [18] XIANG H, ZUO C, ZENG H, et al. White light-emitting diodes from perovskites. *Journal of Semiconductors*, 2021, 42(3): 030202.
- [19] XIANG H, WANG R, CHEN J, et al. Research progress of full electroluminescent white light-emitting diodes based on a single emissive layer. *Light: Science & Applications*, 2021, 10(1): 206.
- [20] XIANG H, CHEN J, WANG R, et al. Perspective on singleemissive-layer white-LED based on perovskites. Applied Physics Letters, 2021, 119(8): 080502.
- [21] ZHOU Y, FANG T, LIU G, et al. Perovskite anion exchange: a microdynamics model and a polar adsorption strategy for precise control of luminescence color. Advanced Functional Materials, 2021, 31(51): 2106871.
- [22] WANG R, XIANG H, CHEN J, et al. Energy regulation in white-light-emitting diodes. ACS Energy Letters, 2022, 7(6): 2173.
- [23] GHOSH S, MISHRA S, SINGH T. Antisolvents in perovskite solar cells: importance, issues, and alternatives. *Advanced Materials Interfaces*, 2020, 7(18): 2000950.
- [24] CHANG C, SOLODUKHIN A, LIAO S, et al. Perovskite white

light-emitting diodes based on a molecular blend perovskite emissive layer. *Journal of Materials Chemistry C*, 2019, **7(28):** 8634.

- [25] LIU D, LIU X, GAN Y, et al. Perovskite/organic hybrid white electroluminescent devices with the stable spectrum and extended operating lifetime. ACS Energy Letters, 2022, 7(1): 523.
- [26] YAO E P, YANG Z, MENG L, et al. High brightness blue and white LEDs based on inorganic perovskite nanocrystals and their composites. Advanced Materials, 2017, 29(23): 1606859.
- [27] WANG C, XUE D, SHEN X, et al. White light-emitting devices based on ZnCdS/ZnS and perovskite nanocrystal heterojunction. *Nanotechnology*, 2019, **30(46):** 465201.
- [28] JIAN M, HONG L, YE F, et al. All-perovskite emission architecture for white light-emitting diodes. ACS Nano, 2018, 12(10): 10486.
- [29] YAN Y, ZHANG Q, Wang Z, et al. High-efficiency tandem white perovskite light-emitting diodes by using an organic/inorganic intermediate connector. *Crystals*, 2022, **12(9)**: 1286.
- [30] ZHANG F, CAI B, SONG J, et al. Efficient blue perovskite lightemitting diodes boosted by 2D/3D energy cascade channels. Advanced Functional Materials, 2020, 30(27): 2001732.
- [31] SONG J, FANG T, LI J, et al. Organic–inorganic hybrid passivation enables perovskite QLEDs with an EQE of 16.48%. Advanced Materials, 2018, 30(50): 1805409.
- [32] LI Y, LI J, XU L, et al. CsPbI₃ perovskite quantum dots: fine purification and highly efficient light-emitting diodes. Acta Chimica Sinica, 2021, 79(1): 126.
- [33] FUNG M, LI Y, LIAO L. Tandem organic light-emitting diodes. Advanced Materials, 2016, 28(47): 10381.

补充材料

钙钛矿多色级联发光二极管中多中心 载流子均衡分布调控研究

王 润,相恒阳,曾海波

(南京理工大学 材料科学与工程学院,新型显示材料与器件工信部重点实验室,南京 210094)

图 S1 红、绿和蓝单色 PeLEDs 的电致发光性能 Fig. S1 EL performance of red, green, and blue monochrome PeLEDs (a) *J-V* curves; (b) *L-V* curves; (c) CE-*V* curves; (d) EQE-*V* curves

图 S2 红、绿和蓝 PeLEDs 在电压 4 V 驱动下的归一化 EL 光谱 Fig. S2 EL spectra of red, green, and blue monochrome PeLEDs under an applied voltage of 4.0 V